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Data Storage
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Source: IDC Global DataSphere Forecast, 2021-2025.
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The Storage Crisis

2016 2018 2020 2022 2024

Global Data Demand

Source: IDC Global StorageSphere, 2021.
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Data centers are very resource intensive
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Why Not Just Make More Storage?

750,000 sq ft over 110 acres
Power: 200 MW
5-year Cost: $100+ million

1 Exabyte Cold Storage Data Center

Ft. Worth, TX

Scaling to a zettabyte (1,000x) 
is impossible with this model

~¼ EB

Source: CERN
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Higher storage density
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Wish List for Next-Generation Storage

3D
media

2D media
No degradation

Higher data stability

Time
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Biology Has Already Solved This Problem

Data figure courtesy Victor Zhirnov, Semiconductor Research 
Corporation, and Karin Strauss, Microsoft Corporation

nucleus (6 um)

DNA
(~3 Gbases)

DNA sequences are stable for 700k+ years 
(under the right conditions)

Orlando, L. et al. Nature (2013) http://dx.doi.org/10.1038/nature12323

http://dx.doi.org/10.1038/nature12323
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DNA Data Storage Workflow

Source: DNA Data Storage Alliance

• Largest published DNA data archive: ~200MB
• Required 9 separate synthesis runs

>$100k/GB >$500/GB

Organick et al. Nat Biotechnol (2018) 
https://doi.org/10.1038/nbt.4079
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Goals: By 2025, make DNA data storage

• Scalable 20 MB/system  1 TB/system
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Molecular Information Storage (MIST) Program

• Economical $100k/GB  $1/GB

• Practical for enterprise archival use 
(end-to-end workflows on a tabletop)
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MIST Program Vision

Present Future

Source: CERN Source: Wikipedia
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Science Fiction  Science Fact

DNA Synthesis Capacity:  128M oligos
Write Capacity:                  2 GB data
Cost:                                   $100/run
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# DNA Synthesis Spots

2 GB/chip

Multi-chip
Systems

2022

2018

Credit: Tara Brown Photography / University of Washington

20271 TB/chip

20301 PB/system
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MIST Synthesis Platforms

300 nm8 um

Approach described in:
Jung. et al. Science Advances (2022)
https://www.science.org/doi/10.1126/sciadv.abm6815

100 um
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MIST Sequencing Platforms

Modified Commercial Instrument
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Novel Biosensor Platform

Direct readout from
MIST synthesis chips
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“Base” level errors
• Substitutions:  ACTG  ACTA
• Insertions: ACTG  ACCTG
• Deletions: ACTG  ACG
• Block insertions, block deletions, …
• Per-base error rate may be 5% for DNA write and read channels

“Oligo” level errors
• Erasures: ACTG, ACAC, GGTC  ACTG, GGTC
• Secondary structure, bias
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Channel Error Model
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“ADS Codex”
• Developed by MIST partners at LANL
• Tunable robustness to any DNA write/read error model

14

MIST Codec

Outer CodecInner Codec

Open source:
https://github.com/lanl/adscodex

https://github.com/lanl/adscodex


I N T E L L I G E N C E  A D V A N C E D  R E S E A R C H  P R O J E C T S  A C T I V I T Y  ( I A R P A )

UNCLASSIFIED

UNCLASSIFIED
15

Industry Is Building On These Advances

DNA Data Storage Traditional Data Storage Academic / Non-Profits / Industrial R&D
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Cost of Writing and Storing 1PB 

Source: DNA Data Storage Alliance
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• Biology has solved fundamental problems in data storage

• The semiconductor industry offers tools to write/read DNA at scale

• Coming Soon: Archival DNA storage appliances

• Benefits: Keep all the world’s data, cheaply and compactly, in DNA

17

Part 1: Conclusion



Part 2:
Computing
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$10M, CO2 = 200 homes/yr
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The Computing Crisis

• Resource requirements are extreme
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100T params
$10B, CO2 = 200k homes/yr

Sources: arXiv:2202.05924
arXiv:2206.05229

• Scaling 1,000x and beyond looks 
prohibitive, even with AI accelerators

• AI models are growing exponentially
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Power Is Already A Bottleneck
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Biology Has Already Solved This Problem

Source: Wikipedia

• Human brain consumes ~20W of power, 
of which nearly half (9W) is lost to heat

Levy & Calvert, PNAS 2021
https://doi.org/10.1073/pnas.2008173118

• Power cost of “training” a brain for 18 years is 
equivalent to powering 0.3 home for 1 year

• Proof by existence that general intelligence can 
be implemented – and efficiently

>100T synapses
(plus many other parameters)
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Bridging The Performance Gap

Neuromorphic Hardware

Inspired by the brain:
Event-based communication

Parallel sparse compute
Processing-in-memory

SpiNNaker
(2018)

Loihi 2
(2021)

TrueNorth
(2015)

• But… we need 1,000,000x better 
power efficiency to rival biology

• As DNN inference accelerators, can be 
>100x more efficient than GPUs [1]

[1] April 2022: https://www.eetasia.com/scaling-and-low-power-requirements-for-neuromorphic-computing/

• Gap: Neuromorphic computing models 
lack explicit guidance from the brain’s

• Data representations
• Data transformations
• Learning rules
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Goal: Revolutionize machine learning by identifying and then exploiting 
the mathematical functions underlying the algorithms of the brain.
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Machine Intelligence from Cortical Networks (MICrONS) Program

+ functional constraints on
representations, optimization, etc.

Inputs
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MICrONS Functional Imaging
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Neurophysiology region
(1.4 x 1.3 x 0.67 mm)
Histology slice
(1.2 mm thick)

Imaging volume spans 
multiple cortical regions, all 
depths of early visual cortex

(~80,000 neurons)

Mouse Brain



I N T E L L I G E N C E  A D V A N C E D  R E S E A R C H  P R O J E C T S  A C T I V I T Y  ( I A R P A ) 25

MICrONS Structural Imaging
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Automatic collection of 40 nm 
tissue sections onto GridTape

Low-res scan of a section 
in one GridTape slot

Detail view of one tile 
within the 1x1 mm ROI
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MICrONS Image Alignment
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Automated Segmentation & Synapse Identification
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Synapse
Identification

Image
Segmentation

Agglomeration
Across Sections

Morphological 
Recovery

Visualizations courtesy Jeff Lichtman



I N T E L L I G E N C E  A D V A N C E D  R E S E A R C H  P R O J E C T S  A C T I V I T Y  ( I A R P A ) 28

MICrONS Data Volume
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Phase 1 (2017)
Mouse V1 Layer 2/3

(0.003 mm3)
Whole Mouse Brain

(~500 mm3)

~400x

~70,000,000 Neurons

0.2 x 0.13 x 0.1 mm
~300 neurons with Functional+EM

~1 Million Synapses 

Phase 2 (2019)
Mouse V1, RL, AL and LM
(1.3 mm3, 1.4 PB of data)

1.4 x 0.87 x 0.84 mm 
200,000 EM cells

~75k neurons with Functional+EM
523 Million Synapses

433x

Pia

White matter

100 um
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Automated Segmentation & Synapse Identification
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~3000 NVIDIA T4 GPU (~2 day completion time)
Produced ~3 PB of additional data (affinity map, PSD map)

“Chunkflow: Distributed Hybrid Cloud Processing of Large 3D Images by Convolutional Nets” 
https://arxiv.org/abs/1904.10489 
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MICrONS Automated Image Segmentation
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Pia, Layer 2/3

Layer 6 / white matter

Layer 4
100 um
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TA3 Princeton: Last 6 Months
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MICrONS-Explorer.org
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Free access courtesy of:
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• Prediction: Most learning models predict graded analog synapse sizes

• MICRONS Data: Excitatory synapses in cortex do not match this prediction

34

What Learning Algorithm Does The Brain Use?

“Binary and analog variation of synapses between cortical pyramidal neurons”
https://doi.org/10.1101/2019.12.29.890319 

Best fitting model:
Sum of a binary variable 
and an analog variable 
drawn from a log-normal 
distribution.
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• MICRONS Data: Inhibitory neurons target specific cellular compartments 
to shape computation by excitatory neurons.
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How Does Computation Map to Cellular Compartments?
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How Does Long-Range Connectivity Relate to Function?

Long-Range Feedback
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• Biology has solved fundamental problems in efficient computing

• Neuroscience offers tools to map the brain’s solutions

• Available Today: Free, public maps of cortical activity and connectivity

• Benefits: Clear guidance for ML/AI algorithm development
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Part 2: Conclusion



Conclusion
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• Biology has solved fundamental problems in data storage & computing

• These solutions can have profound real-world benefits

• Bridging biology, engineering, and computer science is the key

39

Biology Is All You Need
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